with those found in the anion trichloro-(cis-but-2-ene-1,4-diol)platinate(II) (Colapietro \& Zambonelli, 1971). The 2,5-dimethylhex-3-yne-2,5-diol does not appear to exercise a trans bond-lengthening effect when coordinated to platinum(II).

Any discussion about the geometry of the acetylenic ligand has no significance considering the low accuracy of the results. As previously mentioned the electron density on the Fourier and difference maps was very diffuse and it was not possible to distinguish the hydroxyl from the methyl groups bound to $C(2)$ and $C(5)$. The isotropic temperature factors of the terminal atoms of the ligand molecule reached very high values, giving no indication about the nature of the atoms. Any choice based on bond-length considerations is not meaningful. On the other hand no short contacts involving the hydroxyl groups, thus providing a criterion to find them, were observed. Any interaction between the hydroxyl groups of the ligand and the platinum or the chlorine atoms (Chatt et al., 1963) may be excluded,
because none of the 'carbon' atoms bound to $\mathrm{C}(2)$ and $\mathrm{C}(5)$ lies sufficiently close to $\mathrm{Pt}, \mathrm{Cl}(1), \mathrm{Cl}(2)$ or $\mathrm{Cl}(3)$.

The geometry of the cation $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}{ }^{+}$is almost regular.

The technical part of this work was performed by P. Mura.

References

Chatt, J., Guy, R. G., Duncanson, L. A. \& Thompson, D. T. (1963). J. Chem. Soc. pp. 5170-5183.

Colapietro, M. \& Zambonelli, L. (1971). Acta Cryst. B27, 734-740.
Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A 24, 321-324.
Furnas, T. C. (1957). Single-Crystal Orienter Instruction Manual. Milwaukee: General Electric Company.
North, A. C. T., Phillips, D. C. \& Scott Matthews, F. (1968). Acta Cryst. A24, 351-359.

Spagna, R. \& Zambonelli, L. (1971). J. Chem. Soc. 2544 2549.

Acta Cryst. (1973). B29, 2304

Refinement of the Crystal Structures of $\mathrm{Co}_{3} \mathbf{V}_{2} \mathrm{O}_{8}$ and $\mathrm{Ni}_{3} \mathbf{V}_{\mathbf{2}} \mathrm{O}_{8}$

By E. E. Sauerbrei, R. Faggiani and C. Calvo
Institute for Materials Research, McMaster University, Hamilton, Ontario

(Received 9 March 1973; accepted 23 May 1973)

Abstract. $\mathrm{Co}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ and $\mathrm{Ni}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$, orthorhombic, Cmca, $Z=4$ with $a=6.030$ (4),$b=11.486$ (2), $c=8.312$ (5) \AA, $D_{\text {calc }}=4.693, D_{\text {exp }}=4.70 \mathrm{~g} \mathrm{~cm}^{-3}$ and $a=5.936$ (4), $b=$ 11.420 (6) $, c=8 \cdot 240(5) \AA, D_{\text {calc }}=4.828, \quad D_{\text {exp }}=4.87$ $\mathrm{g} \mathrm{cm}^{-3}$ respectively. Crystals of $\mathrm{Co}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ were grown from the melt and $\mathrm{Ni}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ from a KVO_{3} flux. These structures, isotypic with that of $\mathrm{Mg}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$, are based upon a cubic closest packing of oxygen atoms with the cations in octahedral sites, showing average $\mathrm{M}-\mathrm{O}$ bond lengths of 2.093 and $2.089 \AA$ for $\mathrm{M}=\mathrm{Co}$, and 2.061 and $2.056 \AA$ for $\mathrm{M}=\mathrm{Ni}$. V atoms lie on mirror planes and are tetrahedrally coordinated with mean $\mathrm{V}-\mathrm{O}$ bond lengths of 1.732 and $1.736 \AA$ for the Co and Ni salts, respectively. These structures differ from those proposed by Fuess, Bertaut, Pauthenent \& Durif [Acta Cryst. (1970). B29, 2036] only in detail; as in $\mathrm{Mg}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ and $\mathrm{Zn}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$, the longest $\mathrm{V}-\mathrm{O}$ bond lengths involve the oxygen atom bonded to three cations and the vanadium ion.

Introduction. The intensities and cell dimensions were obtained from a crystal $0.20 \times 0.20 \times 0.15 \mathrm{~mm}$ for $\mathrm{Co}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ and a ground sphere with a radius of 0.25 mm for $\mathrm{Ni}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ on a Syntex automatic diffractometer (Mo $K \alpha$, graphite-monochromated, $\theta-2 \theta$ scan with
variable scan rate, scintillation counter with pulse height discrimination, a standard reflexion measured every fifty and background determined at both sides of each peak). Absorption and extinction corrections were applied.

Data were collected up to $2 \theta=70^{\circ}$ for $\mathrm{Co}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ and 50° for $\mathrm{Ni}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ and yielded a total of 664 (507 above

Table 1. Atomic parameters with estimated standard errors

	x	y	z
(a) $\mathrm{Co}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$			
$\mathrm{Co}(1)$	0	0	0
$\mathrm{Co}(2)$	$\frac{1}{4}$	$0 \cdot 1329$ (1)	$\frac{1}{4}$
V	0	$0 \cdot 3773$ (1)	$0 \cdot 1204$ (1)
O(1)	0	$0 \cdot 2503$ (4)	$0 \cdot 2290$ (6)
O(2)	0	$0 \cdot 0010$ (4)	$0 \cdot 2447$ (6)
$\mathrm{O}(3)$	$0 \cdot 2703$ (7)	$0 \cdot 1185$ (2)	$0 \cdot 9983$ (4)
(b) $\mathrm{Ni}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$			
$\mathrm{Ni}(1)$	0	0	0
$\mathrm{Ni}(2)$	$\frac{1}{4}$	$0 \cdot 13024$ (3)	$\frac{1}{4}$
V	0	0.37623 (4)	$0 \cdot 11965$ (7)
$\mathrm{O}(1)$	0	$0 \cdot 2486$ (2)	$0 \cdot 2309$ (3)
$\mathrm{O}(2)$	0	$0 \cdot 0013$ (2)	$0 \cdot 2448$ (3)
$\mathrm{O}(3)$	$0 \cdot 26663$ (3)	$0 \cdot 1189$ (1)	$0 \cdot 0003$ (3)

Table 2. Thermal parameters, with estimated errors
The definition of the temperature factor is:

	$\exp \left[-2 \pi^{2}\left(a^{* 2} h^{2} U_{11}+\ldots+2 a^{*} b^{*} h k U_{12}+\ldots\right)\right]$.					
	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{Co}(1)$	$0 \cdot 0127$ (6)	$0 \cdot 0074$ (5)	$0 \cdot 0065$ (5)	0	0	-0.0002 (4)
$\mathrm{Co}(2)$	0.0101 (4)	$0 \cdot 0055$ (4)	$0 \cdot 0080$ (4)	0	$0 \cdot 0001$ (3)	0
V	$0 \cdot 0105$ (5)	$0 \cdot 0032$ (4)	$0 \cdot 0057$ (4)	0	0	-0.0002 (3)
$\mathrm{O}(1)$	$0 \cdot 0140$ (18)	0.0057 (15)	0.0111 (18)	0	0	$0 \cdot 0035$ (13)
$\mathrm{O}(2)$	0.0119 (18)	0.0049 (14)	0.0084 (15)	0	0	$0 \cdot 0017$ (14)
$\mathrm{O}(3)$	$0 \cdot 0143$ (14)	0.0086 (11)	0.0104 (12)	$0 \cdot 0008$ (11)	0.0010 (11)	-0.0001 (8)
(b) $\mathrm{Ni}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$						
$\mathrm{Ni}(1)$	0.0066 (3)	$0 \cdot 0058$ (3)	$0 \cdot 0048$ (3)	0	0	$-0.0003(2)$
$\mathrm{Ni}(2)$	0.0061 (2)	0.0038 (2)	$0 \cdot 0053$ (2)	0	$0 \cdot 0000$ (2)	0
V	$0 \cdot 0039$ (2)	0.0001 (2)	$0 \cdot 0021$ (2)	0	0	$0 \cdot 0002$ (3)
$\mathrm{O}(1)$	$0 \cdot 0082$ (9)	0.0054 (9)	0.0078 (10)	0	0	$0 \cdot 0018$ (8)
$\mathrm{O}(2)$	0.0014 (8)	$0 \cdot 0043$ (9)	$0 \cdot 0051$ (9)	0	0	$0 \cdot 0014$ (3)
O(3)	$0 \cdot 0090$ (8)	$0 \cdot 0071$ (7)	0.0059 (8)	$-0.0011(5)$	$0 \cdot 0008$ (5)	-0.0000 (5)

3σ) and 547 (394 above 3σ) unique reflexions, respectively, whose intensity measure was positive. The systematic absences are $h k l$ with $h+k$ odd, $h 0 l$ with l odd and $h k 0$ with h odd. Trial parameters were the final parameters for $\mathrm{Mg}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ (Krishnamachari \& Calvo, 1971). Full-matrix least-squares refinement with anisotropic thermal parameters and weights chosen so that $\omega\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ would be independent of F_{o} yielded final R values of 0.057 and 0.028 for $\mathrm{Co}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ and $\mathrm{Ni}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ respectively. The atomic parameters are listed in Tables 1 and 2.*

Discussion. The structures of $\mathrm{Co}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ and $\mathrm{Ni}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ are isotypic with those of $\mathrm{Mg}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ (Krishnamachari \& Calvo, 1971) and $\mathrm{Zn}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ (Gopal \& Calvo, 1971). Note that the x coordinate of $\mathrm{O}(3)$ in the latter paper should be $0 \cdot 2778$. Tables 3 and 4 contain the pertinent bond lengths and angles. The cation polyhedra in both crystals are similarly distorted. The four $\mathrm{M}(1)-\mathrm{O}(3)$ bonds generated by the $2 / m$ symmetry at $\mathrm{M}(1)$ are significantly longer than the axial $\mathrm{M}(1)-\mathrm{O}(2)$ bond lengths. The $\mathrm{M}(2)-\mathrm{O}(2)$ bonds are the longer of the three sets of symmetry independent bonds around M(2) and the $\mathrm{M}(2)-\mathrm{O}(1)$ one shortest. The $\mathrm{V}-\mathrm{O}$ bond lengths, compared with those in $\mathrm{Mg}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ and $\mathrm{Zn}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ in Table 4, range from $1 \cdot 702$ to $1 \cdot 813 \AA$. The longest V-O bond involves that oxygen atom shared between three cations and the vanadium ion while the remaining ones are shared between only two cations and the vanadium ion. The $\mathrm{O}-\mathrm{V}-\mathrm{O}$ bond angles, except for $\mathrm{O}(3) g-\mathrm{V}-$ $\mathrm{O}(3) i$, do not deviate significantly from ideality. All four structures show the same V-O bond lengths within 3σ and therefore the weighted mean $\mathrm{V}-\mathrm{O}$ bond lengths

* A table of observed and calculated structures has been deposited with the National Lending Library, England, as Supplementary Publication No.SUP 30144 (5pp.). Copies may be obtained through the Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH 11 NZ, England.
over the four compounds are also given in Table 4. The deviation between the predicted value, using $d_{\mathrm{v}-\mathrm{o}}$ $=0 \cdot 1604 p_{0}+1 \cdot 721$, and the weighted mean is greatest for the longest bond. It is not unexpected that the linear correlation predicted by Baur (1970) would break down as the distortion increases. In contrast the V $\mathrm{O}(1)$ and V-O(2) values determined by Fuess, Bertaut, Pauthenet \& Durif (1970) by combining powder neutron and X-ray diffraction are 1.78 (3) and 1.67 (3) \AA $\left(\mathrm{Co}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}\right)$ and 1.82 (4) and 1.72 (3) $\AA\left(\mathrm{Ni}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}\right)$ respectively.

Table 3. Bond lengths and angles, with estimated standard errors, for $\mathrm{Co}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ and $\mathrm{Ni}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$

Co			
Ni			
$\mathrm{M}(1)-\mathrm{O}(2) a, b$	$2.031(5) \AA$	$2.017(2) \AA$	$2 \times$
$\mathrm{M}(1)-\mathrm{O}(3) a, b, d, e$	$2.124(5)$	$2.084(2)$	$4 \times$
$\mathrm{M}(2)-\mathrm{O}(1) a, g$	$2.032(3)$	$2.013(2)$	$2 \times$
$\mathrm{M}(2)-\mathrm{O}(2) a, g$	$2.137(3)$	$2.091(2)$	$2 \times$
$\mathrm{M}(2)-\mathrm{O}(3) a, h$	$2.099(4)$	$2.064(2)$	$2 \times$

V-O (see Table 4)

$\mathrm{O}(2) a-\mathrm{M}(1)-\mathrm{O}(3) a$	$89.8(3)^{\circ}$	89.66 (7) ${ }^{\circ}$
$\mathrm{O}(3) a-\mathrm{M}(1)-\mathrm{O}(3) b$	79.7 (2)	81.34 (7)
$\mathrm{O}(1) a-\mathrm{M}(2)-\mathrm{O}(1) h$	96.8 (2)	95.64 (7)
$\mathrm{O}(1) a-\mathrm{M}(2)-\mathrm{O}(2) a$	$86 \cdot 8$ (3)	87.04 (7)
$\mathrm{O}(1) a-\mathrm{M}(2)-\mathrm{O}(2) g$	175.1 (2)	$175 \cdot 90$ (9)
$\mathrm{O}(1) a-\mathrm{M}(2)-\mathrm{O}(3) h$	95.4 (3)	94.88 (8)
$\mathrm{O}(1) a-\mathrm{M}(2)-\mathrm{O}(3) a$	90.6 (3)	89.94 (8)
$\mathrm{O}(2) a-\mathrm{M}(2)-\mathrm{O}(2) g$	89.9 (1)	$90 \cdot 46$ (7)
$\mathrm{O}(2) a-\mathrm{M}(2)-\mathrm{O}(3) a$	88.0 (3)	88.21 (8)
$\mathrm{O}(3) a-\mathrm{M}(2)-\mathrm{O}(3) c$	171.0 (1)	172.82 (7)
$\mathrm{O}(1)-\mathrm{V}-\mathrm{O}(2) a$	110.0 (2)	109.79 (11)
$\mathrm{O}(1)-\mathrm{V}-\mathrm{O}(3) f$	$109 \cdot 2$ (2)	109.66 (7)
$\mathrm{O}(2) c-\mathrm{V}-\mathrm{O}(3) f$	$109 \cdot 7$ (2)	$109 \cdot 37$ (7)
$\mathrm{O}(3) \mathrm{g}-\mathrm{V}-\mathrm{O}(3) i$	$109 \cdot 1$ (3)	108.97 (10)

Symmetry transformations

[^0]Table 4. V-O bond lengths (\AA) in isotypic $\mathrm{M}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ structures

	$\mathrm{Co}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$	$\mathrm{Ni}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ length	$\mathrm{Mg}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ length	$\mathrm{Zn}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$	Predicted length	Weighted
		$1.715(5)$	$1.722(2)$	$1.716(1)$	$1.73(1)$	$1.707(20)$
V-O(1)		$1.810(5)$	$1.813(2)$	$1.809(1)$	$1.79(1)$	$1.762(20)$
$\mathrm{V}-\mathrm{O}(2)$		1.720				
$\mathrm{~V}-\mathrm{O}(3)$	$2 \times$	$1.702(5)$	$1.704(2)$	$1.695(1)$	$1.67(1)$	$1.707(20)$

[^1]References
Gopal, R. (1972). Ph. D. Thesis, McMaster Univ., Hamil- ton, Ontario.

Baur, W. H. (1970). Trans. Amer. Cryst. Assoc. 6, 129155.

Fuess, H., Bertaut, E. F., Pauthenent, R. \& Durif, A. (1970). Acta Cryst. B26, 2036-2046.

GopaL, R. \& Calvo, C. (1971). Canad. J. Chem. 49, 30563059.

Krishnamachari, N. \& Calvo, C. (1971). Canad. J. Chem. 49, 1629-1634.

Acta Cryst. (1973). B29, 2306

Dicarbonylnitrosyltriphenylarsinecobalt(0)

By G. Gilli
Istituto Chimico, Università di Ferrara, Ferrara, Italy
M.SACERDOTI
Istituto di Mineralogia, Università di Ferrara, Ferrara, Italy
and G. Reichenbach
Istituto di Chimica Fisica, Università di Perugia, Perugia, Italy

(Received 16 April 1973; accepted 15 May 1973)

Abstract

Triclinic, $P \overline{1}, a=11 \cdot 286$ (4), $b=10.623$ (4), $c=10.454$ (5) $\AA, \alpha=116.53(4)^{\circ}, \beta=77.87(4)^{\circ}, \gamma=$ 118.30 (4) ${ }^{\circ}$, formula $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{CoNO}_{3} \mathrm{As}, Z=2, D_{x}=1.53$ $\mathrm{g} \mathrm{cm}^{-3}$. The structure consists of discrete molecular units. The coordination around cobalt is approximately tetrahedral and N and C atoms in the nitrosyl and carbonyl groups are disordered.

Introduction. Points of interest in tetracoordinate cobalt nitrosyl complexes lie in the deformation of the tetrahedral coordination in presence of different ligands and in the value of the $\mathrm{Co}-\mathrm{N}-\mathrm{O}$ angle. For this angle, values of 127,121 and 119° have been reported respectively for $\mathrm{Co}(\mathrm{NO})\left[\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CN}_{3}\right)_{2}\right]$ (Alderman, Owston \& Rowe, 1962), $\left[\mathrm{CoCl}(\mathrm{NO})(\mathrm{en})_{2}\right]\left[\mathrm{ClO}_{4}\right]$ (Snyder \& Weaver, 1969) and $\left[\mathrm{Co}(\mathrm{NO})\left(\mathrm{NH}_{3}\right)_{5}\right]_{\mathrm{Cl}}^{2}$ (Pratt, Coyle \& Ibers, 1971). Markedly less bent linkages are reported for different complexes: 170° for $\left[\mathrm{Co}(\mathrm{NO})_{2} \mathrm{I}\right]_{n}$ (Dahl, de Gil \& Feltham, 1969) and 178° for $\mathrm{Co}(\mathrm{NO})(\mathrm{CO})_{2}$ PPh_{3} (Albano, Bellon \& Ciani, 1972; Ward, Caughlan, Voecks \& Jennings, 1972).

Experimental. Crystals of $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{CoNO}_{3}$ As were prepared by the method of Innorta, Reichenback \& Fof-
fani (1970) from $\mathrm{Co}(\mathrm{CO})_{3} \mathrm{NO}$ and AsPh_{3}. A crystal having a cross section $0.20 \times 0.11 \mathrm{~mm}$, covered by a collodion film, was mounted along the c axis. The unit-cell dimensions were refined by a least-squares fit from the powder pattern. Intensity data were collected from equi-inclination Weissenberg photographs with Fe $K \alpha$ radiation. A combination of the multiple-film and multiple-exposure techniques was used. Intensities were measured by photometric integration of reflexions, integrated one-dimensionally by the Weissenberg camera. Altogether, 1499 reflexions were collected (of which 465 were not observed). The intensities were not corrected for absorption ($\mu=0 \cdot 6$).

Scattering factors were taken from Cromer \& Waber (1965). Allowance was made for the Δf^{\prime} and $\Delta f^{\prime \prime}$ terms of the As and Co atoms. The computations were carried out on a CDC-6600 computer with the X-RAY 71 system of crystallographic programs.

The crystal structure was solved by Patterson and Fourier methods and refined by full-matrix leastsquares calculations. The level-by-level scale factors were refined during the isotropic refinement. The N and C atoms in the nitrosyl and carbonyl groups could not be distinguished and were refined as composite

[^0]: (a) x, y, z; (b) $-x,-y, z$; (c) $\frac{1}{2}-x, \frac{1}{2}+y, z ;(d)-x,-y,-z$; (e) $x, y,-z ;(f)-x, \frac{1}{2}-y, \frac{1}{2}+z ;(g) \frac{1}{2}-x, y, \frac{1}{2}+z ;(h) \frac{1}{2}-x, y$, $\frac{1}{2}-z ;(i)-x, \frac{1}{2}-y, \frac{1}{2}-z$.

[^1]: * Calculated as suggested by Baur from $d_{\mathrm{V}-\mathrm{o}}=0 \cdot 160 \Delta p_{0}+1 \cdot 721$, where Δp_{o} is $p_{\mathrm{o}}-\left\langle p_{\mathrm{o}}\right\rangle$ with p_{o} the bond strength of the oxygen atom. The coefficients were determined by Gopal (1972) from 23 accurately refined structures containing tetrahedrally coordinated vanadium; 1.721 represents the grand average $\mathrm{V}-\mathrm{O}$ bond length.

