with those found in the anion trichloro-(*cis*-but-2-ene-1,4-diol)platinate(II) (Colapietro & Zambonelli, 1971). The 2,5-dimethylhex-3-yne-2,5-diol does not appear to exercise a *trans* bond-lengthening effect when coordinated to platinum(II).

Any discussion about the geometry of the acetylenic ligand has no significance considering the low accuracy of the results. As previously mentioned the electron density on the Fourier and difference maps was very diffuse and it was not possible to distinguish the hydroxyl from the methyl groups bound to C(2) and C(5). The isotropic temperature factors of the terminal atoms of the ligand molecule reached very high values, giving no indication about the nature of the atoms. Any choice based on bond-length considerations is not meaningful. On the other hand no short contacts involving the hydroxyl groups, thus providing a criterion to find them, were observed. Any interaction between the hydroxyl groups of the ligand and the platinum or the chlorine atoms (Chatt *et al.*, 1963) may be excluded, because none of the 'carbon' atoms bound to C(2) and C(5) lies sufficiently close to Pt, Cl(1), Cl(2) or Cl(3).

The geometry of the cation $P(C_6H_5)_4^+$ is almost regular.

The technical part of this work was performed by P. Mura.

References

- CHATT, J., GUY, R. G., DUNCANSON, L. A. & THOMPSON, D. T. (1963). J. Chem. Soc. pp. 5170-5183.
- COLAPIETRO, M. & ZAMBONELLI, L. (1971). Acta Cryst. B27, 734–740.
- CROMER, D. T. (1965). Acta Cryst. 18, 17-23.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-324.
- FURNAS, T. C. (1957). Single-Crystal Orienter Instruction Manual. Milwaukee: General Electric Company.
- North, A. C. T., Phillips, D. C. & Scott Matthews, F. (1968). Acta Cryst. A24, 351-359.
- SPAGNA, R. & ZAMBONELLI, L. (1971). J. Chem. Soc. 2544-2549.

Acta Cryst. (1973). B29, 2304

Refinement of the Crystal Structures of Co₃V₂O₈ and Ni₃V₂O₈

BY E. E. SAUERBREI, R. FAGGIANI AND C. CALVO

Institute for Materials Research, McMaster University, Hamilton, Ontario

(Received 9 March 1973; accepted 23 May 1973)

Abstract. Co₃V₂O₈ and Ni₃V₂O₈, orthorhombic, Cmca, Z = 4 with a = 6.030 (4), b = 11.486 (2), c = 8.312 (5) Å, $D_{\text{calc}} = 4.693, D_{\text{exp}} = 4.70 \text{ g cm}^{-3} \text{ and } a = 5.936 (4), b =$ 11.420 (6), c = 8.240 (5) Å, $D_{calc} = 4.828$, $D_{exp} = 4.87$ g cm⁻³ respectively. Crystals of $\text{Co}_3\text{V}_2\text{O}_8$ were grown from the melt and $Ni_3V_2O_8$ from a KVO₃ flux. These structures, isotypic with that of $Mg_3V_2O_8$, are based upon a cubic closest packing of oxygen atoms with the cations in octahedral sites, showing average M-O bond lengths of 2.093 and 2.089 Å for M=Co, and 2.061 and 2.056 Å for M=Ni. V atoms lie on mirror planes and are tetrahedrally coordinated with mean V-O bond lengths of 1.732 and 1.736 Å for the Co and Ni salts, respectively. These structures differ from those proposed by Fuess, Bertaut, Pauthenent & Durif [Acta Cryst. (1970). B29, 2036] only in detail; as in $Mg_3V_2O_8$ and $Zn_3V_2O_8$, the longest V–O bond lengths involve the oxygen atom bonded to three cations and the vanadium ion.

Introduction. The intensities and cell dimensions were obtained from a crystal $0.20 \times 0.20 \times 0.15$ mm for $Co_3V_2O_8$ and a ground sphere with a radius of 0.25 mm for $Ni_3V_2O_8$ on a Syntex automatic diffractometer (Mo K α , graphite-monochromated, θ -2 θ scan with

variable scan rate, scintillation counter with pulse height discrimination, a standard reflexion measured every fifty and background determined at both sides of each peak). Absorption and extinction corrections were applied.

Data were collected up to $2\theta = 70^{\circ}$ for $Co_3V_2O_8$ and 50° for $Ni_3V_2O_8$ and yielded a total of 664 (507 above

Table	1. Atomic parameters with estimated	
	standard errors	

	x	У	z
(a) Co_3V_2	$_{2}O_{8}$		
Co(1)	0	0	0
Co(2)	14	0.1329 (1)	$\frac{1}{4}$
V	0	0.3773(1)	0.1204(1)
O(1)	0	0.2503(4)	0.2290 (6)
O(2)	0	0.0010 (4)	0.2447 (6)
O(3)	0.2703 (7)	0.1185 (2)	0.9983 (4)
(b) Ni ₃ V ₂	O ₈		
Ni(1)	0	0	0
Ni(2)	ł	0.13024(3)	1
V	Ó	0.37623 (4)	0.11965 (7)
O (1)	0	0.2486(2)	0.2309(3)
O(2)	0	0.0013(2)	0.2448(3)
O(3)	0.26663 (3)	0.1189 (1)	0.0003 (3)

Table 2. Thermal parameters, with estimated errors

	$\exp\left[-2\pi^2\right]$	$(a^{*2}h^2U_{11} + \ldots + 2)$	$a^*b^*hkU_{12}+\ldots)]$.		
U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
0.0127 (6)	0.0074 (5)	0.0065(5)	0	0	-0.0002 (4)
0.0101 (4)	0·0055 (4)	0.0080(4)	0	0.0001(3)	0
0.0105 (5)	0.0032 (4)	0.0057 (4)	0	0	-0.0002(3)
0.0140 (18)	0.0057 (15)	0.0111 (18)	0	0	0.0035(13)
0.0119 (18)	0.0049 (14)	0.0084 (15)	0	0	0.0017(14)
0.0143 (14)	0.0086 (11)	0.0104 (12)	0.0008 (11)	0.0010 (11)	-0.0001 (8)
0.0066(3)	0.0058(3)	0.0048(3)	0	0	-0.0003(2)
0.0061 (2)	0.0038(2)	0.0053(2)	Õ	0.0000(2)	0
0.0039 (2)	0.0001(2)	0·0021 (2)	0	0	0.0002(3)
0.0082 (9)	0.0054 (9)	0.0078 (10)	0	0	0.0018(8)
0.0014 (8)	0.0043 (9)	0.0051 (9)	0	0	0.0014(3)
0.0090 (8)	0.0071 (7)	0.0059 (8)	-0.0011 (5)	0.0008 (5)	-0.0000(5)
	U_{11} 0.0127 (6) 0.0101 (4) 0.0105 (5) 0.0140 (18) 0.0119 (18) 0.0143 (14) 0.0066 (3) 0.0061 (2) 0.0082 (9) 0.0014 (8) 0.0090 (8)	$\exp \left[-2\pi^{2} \left(\begin{array}{cccc} U_{11} & U_{22} \\ 0.0127 (6) & 0.0074 (5) \\ 0.0101 (4) & 0.0055 (4) \\ 0.0105 (5) & 0.0032 (4) \\ 0.0140 (18) & 0.0057 (15) \\ 0.0119 (18) & 0.0049 (14) \\ 0.0143 (14) & 0.0086 (11) \end{array}\right)$	$\exp \left[-2\pi^2(a^{*2}h^2U_{11}+\ldots+2x_{11}^2)\right]$ $U_{11} \qquad U_{22} \qquad U_{33} \qquad U_{11} + \ldots + 2x_{11}^2$ $U_{11} \qquad U_{22} \qquad U_{33} \qquad U_{11} + \ldots + 2x_{11}^2$ $0.0127(6) \qquad 0.0074(5) \qquad 0.0065(5) \qquad 0.0080(4) \qquad 0.0055(4) \qquad 0.0080(4) \qquad 0.0057(4) \qquad 0.0057(4) \qquad 0.0057(4) \qquad 0.0057(4) \qquad 0.0057(15) \qquad 0.01111(18) \qquad 0.0057(15) \qquad 0.01111(18) \qquad 0.0057(15) \qquad 0.01111(18) \qquad 0.0049(14) \qquad 0.0086(11) \qquad 0.0084(15) \qquad 0.0143(14) \qquad 0.0086(11) \qquad 0.0104(12) \qquad 0.0066(3) \qquad 0.0058(3) \qquad 0.0048(3) \qquad 0.0061(2) \qquad 0.0058(2) \qquad 0.0053(2) \qquad 0.0053(2) \qquad 0.0054(9) \qquad 0.0053(2) \qquad 0.0054(9) \qquad 0.00718(10) \qquad 0.0014(8) \qquad 0.0043(9) \qquad 0.0051(9) \qquad 0.0059(8) \qquad 0.0071(7) \qquad 0.0059(8) \qquad 0.0059(8$	$\exp \begin{bmatrix} -2\pi^2(a^{*2}h^2U_{11}+\ldots+2a^*b^*hkU_{12}+\ldots) \end{bmatrix}.$ $U_{11} \qquad U_{22} \qquad U_{33} \qquad U_{12}$ $0.0127 (6) \qquad 0.0074 (5) \qquad 0.0065 (5) \qquad 0$ $0.0101 (4) \qquad 0.0055 (4) \qquad 0.0080 (4) \qquad 0$ $0.0105 (5) \qquad 0.0032 (4) \qquad 0.0057 (4) \qquad 0$ $0.0140 (18) \qquad 0.0057 (15) \qquad 0.0111 (18) \qquad 0$ $0.0119 (18) \qquad 0.0057 (15) \qquad 0.0111 (18) \qquad 0$ $0.0143 (14) \qquad 0.0086 (11) \qquad 0.0084 (15) \qquad 0$ $0.0066 (3) \qquad 0.0058 (3) \qquad 0.0048 (3) \qquad 0$ $0.0066 (3) \qquad 0.0058 (3) \qquad 0.0048 (3) \qquad 0$ $0.0066 (3) \qquad 0.0058 (3) \qquad 0.0048 (3) \qquad 0$ $0.0066 (2) \qquad 0.0058 (2) \qquad 0.0053 (2) \qquad 0$ $0.0039 (2) \qquad 0.0054 (9) \qquad 0.0071 (2) \qquad 0$ $0.0052 (9) \qquad 0.0054 (9) \qquad 0.0051 (9) \qquad 0$ $0.0090 (8) \qquad 0.0071 (7) \qquad 0.0059 (8) \qquad -0.0011 (5)$	$\exp\left[-2\pi^2(a^{*2}h^2U_{11}+\ldots+2a^*b^*hkU_{12}+\ldots)\right].$ $U_{11} \qquad U_{22} \qquad U_{33} \qquad U_{12} \qquad U_{13}$ $0.0127 (6) \qquad 0.0074 (5) \qquad 0.0065 (5) \qquad 0 \qquad 0$ $0.0101 (4) \qquad 0.0055 (4) \qquad 0.0080 (4) \qquad 0 \qquad 0.0001 (3)$ $0.0105 (5) \qquad 0.0032 (4) \qquad 0.0057 (4) \qquad 0 \qquad 0$ $0.0140 (18) \qquad 0.0057 (15) \qquad 0.0111 (18) \qquad 0 \qquad 0$ $0.0119 (18) \qquad 0.0057 (15) \qquad 0.0111 (18) \qquad 0 \qquad 0$ $0.0143 (14) \qquad 0.0086 (11) \qquad 0.0104 (12) \qquad 0.0008 (11) \qquad 0.0010 (11)$ $0.0066 (3) \qquad 0.0058 (3) \qquad 0.0048 (3) \qquad 0 \qquad 0$ $0.0066 (3) \qquad 0.0058 (3) \qquad 0.0048 (3) \qquad 0 \qquad 0$ $0.0066 (3) \qquad 0.0058 (3) \qquad 0.0048 (3) \qquad 0 \qquad 0$ $0.0066 (3) \qquad 0.0058 (3) \qquad 0.0071 (2) \qquad 0.0021 (2) \qquad 0 \qquad 0$ $0.0082 (9) \qquad 0.0054 (9) \qquad 0.0078 (10) \qquad 0 \qquad 0$ $0.0014 (8) \qquad 0.0043 (9) \qquad 0.0051 (9) \qquad 0 \qquad 0$ $0.0008 (5)$

The definition of the temperature factor is:

 3σ) and 547 (394 above 3σ) unique reflexions, respectively, whose intensity measure was positive. The systematic absences are *hkl* with h + k odd, *h0l* with *l* odd and *hk*0 with *h* odd. Trial parameters were the final parameters for Mg₃V₂O₈ (Krishnamachari & Calvo, 1971). Full-matrix least-squares refinement with anisotropic thermal parameters and weights chosen so that $\omega(|F_o| - |F_c|)^2$ would be independent of F_o yielded final *R* values of 0.057 and 0.028 for Co₃V₂O₈ and Ni₃V₂O₈ respectively. The atomic parameters are listed in Tables 1 and 2.*

Discussion. The structures of $Co_3V_2O_8$ and $Ni_3V_2O_8$ are isotypic with those of $Mg_3V_2O_8$ (Krishnamachari & Calvo, 1971) and $Zn_3V_2O_8$ (Gopal & Calvo, 1971). Note that the x coordinate of O(3) in the latter paper should be 0.2778. Tables 3 and 4 contain the pertinent bond lengths and angles. The cation polyhedra in both crystals are similarly distorted. The four M(1)-O(3) bonds generated by the 2/m symmetry at M(1) are significantly longer than the axial M(1)-O(2) bond lengths. The M(2)-O(2) bonds are the longer of the three sets of symmetry independent bonds around M(2)and the M(2)-O(1) one shortest. The V-O bond lengths, compared with those in $Mg_3V_2O_8$ and $Zn_3V_2O_8$ in Table 4, range from 1.702 to 1.813 Å. The longest V–O bond involves that oxygen atom shared between three cations and the vanadium ion while the remaining ones are shared between only two cations and the vanadium ion. The O-V-O bond angles, except for O(3)g-V-O(3)i, do not deviate significantly from ideality. All four structures show the same V-O bond lengths within 3σ and therefore the weighted mean V–O bond lengths

over the four compounds are also given in Table 4. The deviation between the predicted value, using $d_{V-O} = 0.160 \Delta p_0 + 1.721$, and the weighted mean is greatest for the longest bond. It is not unexpected that the linear correlation predicted by Baur (1970) would break down as the distortion increases. In contrast the V-O(1) and V-O(2) values determined by Fuess, Bertaut, Pauthenet & Durif (1970) by combining powder neutron and X-ray diffraction are 1.78 (3) and 1.67 (3) Å (Co₃V₂O₈) and 1.82 (4) and 1.72 (3) Å (Ni₃V₂O₈) respectively.

Table 3.	Bond	lengths	and	angles,	with	estimated	stan-
G	lard ei	rrors, fo	r Co	V_2O_8	and N	li ₂ V ₂ O.	

M(1)-O(2) <i>a</i> , <i>b</i> M(1)-O(3) <i>a</i> , <i>b</i> , <i>d</i> , <i>e</i> M(2)-O(1) <i>a</i> , <i>g</i> M(2)-O(2) <i>a</i> , <i>g</i> M(2)-O(3) <i>a</i> , <i>h</i>	Co 2·031 (5) Å 2·124 (5) 2·032 (3) 2·137 (3) 2·099 (4)	Ni 2·017 (2) Å 2·084 (2) 2·013 (2) 2·091 (2) 2·064 (2)	2 × 4 × 2 × 2 × 2 ×
V-O (see Table 4)			
$\begin{array}{l} O(2)a-M(1)-O(3)a\\ O(3)a-M(1)-O(3)b\\ O(1)a-M(2)-O(1)h\\ O(1)a-M(2)-O(2)a\\ O(1)a-M(2)-O(2)g\\ O(1)a-M(2)-O(3)h\\ O(1)a-M(2)-O(3)a\\ O(2)a-M(2)-O(2)g\\ O(2)a-M(2)-O(3)a\\ O(3)a-M(2)-O(3)c\\ \end{array}$	89.8 (3)° 79.7 (2) 96.8 (2) 86.8 (3) 175.1 (2) 95.4 (3) 90.6 (3) 89.9 (1) 88.0 (3) 171.0 (1)	$\begin{array}{c} 89 \cdot 66 \ (7)^{\circ} \\ 81 \cdot 34 \ (7) \\ 95 \cdot 64 \ (7) \\ 87 \cdot 04 \ (7) \\ 175 \cdot 90 \ (9) \\ 94 \cdot 88 \ (8) \\ 89 \cdot 94 \ (8) \\ 90 \cdot 46 \ (7) \\ 88 \cdot 21 \ (8) \\ 172 \cdot 82 \ (7) \end{array}$	
$\begin{array}{l} O(1) - V - O(2)a \\ O(1) - V - O(3)f \\ O(2)c - V - O(3)f \\ O(3)g - V - O(3)i \end{array}$	110·0 (2) 109·2 (2) 109·7 (2) 109·1 (3)	109·79 (11) 109·66 (7) 109·37 (7) 108·97 (10)	

Symmetry transformations

(a) x, y, z; (b) -x, -y, z; (c) $\frac{1}{2}-x$, $\frac{1}{2}+y$, z; (d) -x, -y, -z; (e) x, y, -z; (f) -x, $\frac{1}{2}-y$, $\frac{1}{2}+z$; (g) $\frac{1}{2}-x$, y, $\frac{1}{2}+z$; (h) $\frac{1}{2}-x$, y, $\frac{1}{2}-z$; (i) -x, $\frac{1}{2}-y$, $\frac{1}{2}-z$.

^{*} A table of observed and calculated structures has been deposited with the National Lending Library, England, as Supplementary Publication No.SUP 30144 (5pp.). Copies may be obtained through the Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1 NZ, England.

Table 4. V–O bond lengths (Å) in isotypic $M_3V_2O_8$ structures

		Co ₃ V ₂ O ₈ length	Ni ₃ V ₂ O ₈ length	Mg ₃ V ₂ O ₈ length	$Zn_3V_2O_8$ length	Predicted length*	Weighted mean
V-O(1)		1.715 (5)	1.722 (2)	1.716(1)	1.73 (1)	1.707 (20)	1.720
V - O(2)		1.810 (5)	1.813 (2)	1.809 (1)	1.79 (1)	1.762 (20)	1.810
V+O(3)	$2 \times$	1.702 (5)	1.704 (2)	1.695 (1)	1.67 (1)	1.707 (20)	1.697

* Calculated as suggested by Baur from $d_{V-0} = 0.160 \Delta p_0 + 1.721$, where Δp_0 is $p_0 - \langle p_0 \rangle$ with p_0 the bond strength of the oxygen atom. The coefficients were determined by Gopal (1972) from 23 accurately refined structures containing tetrahedrally coordinated vanadium; 1.721 represents the grand average V-O bond length.

References	GOPAL, R. (1972). Ph. D. Thesis, McMaster Univ., Hamil- ton, Ontario.
BAUR, W. H. (1970). Trans. Amer. Cryst. Assoc. 6, 129- 155.	GOPAL, R. & CALVO, C. (1971). Canad. J. Chem. 49, 3056- 3059.
FUESS, H., BERTAUT, E. F., PAUTHENENT, R. & DURIF, A. (1970). Acta Cryst. B26, 2036-2046.	KRISHNAMACHARI, N. & CALVO, C. (1971). Canad. J. Chem. 49, 1629–1634.

Acta Cryst. (1973). B29, 2306

Dicarbonylnitrosyltriphenylarsinecobalt(0)

BY G. GILLI

Istituto Chimico, Università di Ferrara, Ferrara, Italy

M. Sacerdoti

Istituto di Mineralogia, Università di Ferrara, Ferrara, Italy

AND G. REICHENBACH

Istituto di Chimica Fisica, Università di Perugia, Perugia, Italy

(Received 16 April 1973; accepted 15 May 1973)

Abstract. Triclinic, $P\overline{1}$, a=11.286 (4), b=10.623 (4), c=10.454 (5) Å, $\alpha=116.53$ (4)°, $\beta=77.87$ (4)°, $\gamma=118.30$ (4)°, formula $C_{20}H_{15}CONO_3As$, Z=2, $D_x=1.53$ g cm⁻³. The structure consists of discrete molecular units. The coordination around cobalt is approximately tetrahedral and N and C atoms in the nitrosyl and carbonyl groups are disordered.

Introduction. Points of interest in tetracoordinate cobalt nitrosyl complexes lie in the deformation of the tetrahedral coordination in presence of different ligands and in the value of the Co–N–O angle. For this angle, values of 127, 121 and 119° have been reported respectively for Co(NO) [S₂CN(CN₃)₂] (Alderman, Owston & Rowe, 1962), [CoCl(NO) (en)₂] [ClO₄] (Snyder & Weaver, 1969) and [Co(NO) (NH₃)₅]Cl₂ (Pratt, Coyle & Ibers, 1971). Markedly less bent linkages are reported for different complexes: 170° for [Co(NO)₂I]_n (Dahl, de Gil & Feltham, 1969) and 178° for Co(NO) (CO)₂ PPh₃ (Albano, Bellon & Ciani, 1972; Ward, Caughlan, Voecks & Jennings, 1972).

Experimental. Crystals of $C_{20}H_{15}CoNO_3As$ were prepared by the method of Innorta, Reichenback & Fof-

fani (1970) from Co(CO)₃NO and AsPh₃. A crystal having a cross section 0.20×0.11 mm, covered by a collodion film, was mounted along the *c* axis. The unit-cell dimensions were refined by a least-squares fit from the powder pattern. Intensity data were collected from equi-inclination Weissenberg photographs with Fe K\alpha radiation. A combination of the multiple-film and multiple-exposure techniques was used. Intensities were measured by photometric integration of reflexions, integrated one-dimensionally by the Weissenberg camera. Altogether, 1499 reflexions were collected (of which 465 were not observed). The intensities were not corrected for absorption ($\mu = 0.6$).

Scattering factors were taken from Cromer & Waber (1965). Allowance was made for the $\Delta f'$ and $\Delta f''$ terms of the As and Co atoms. The computations were carried out on a CDC-6600 computer with the X-RAY 71 system of crystallographic programs.

The crystal structure was solved by Patterson and Fourier methods and refined by full-matrix leastsquares calculations. The level-by-level scale factors were refined during the isotropic refinement. The N and C atoms in the nitrosyl and carbonyl groups could not be distinguished and were refined as composite